arXiv:2305.07372v2 [cs.DB] 14 Jun 2023

Interactive Text-to-SQL Generation via Editable Step-by-Step Explanations

Yuan Tian!, Zheng Zhang®, Zheng Ning?,
Toby Jia-Jun Li?, Jonathan K. Kummerfeld?, and Tianyi Zhang'
Purdue University!, University of Notre Dame?, The University of Sydney?
tian211@purdue.edu, zzhang37@nd.edu, zning@end.edu,
toby.j.li@nd.edu, jonathan.kummerfeld@sydney.edu.au, tianyi@purdue.edu

Abstract

Relational databases play an important role in
this Big Data era. However, it is challenging
for non-experts to fully unleash the analytical
power of relational databases, since they are not
familiar with database languages such as SQL.
Many techniques have been proposed to auto-
matically generate SQL from natural language,
but they suffer from two issues: (1) they still
make many mistakes, particularly for complex
queries, and (2) they do not provide a flexible
way for non-expert users to validate and refine
the incorrect queries. To address these issues,
we introduce a new interaction mechanism that
allows users directly edit a step-by-step expla-
nation of an incorrect SQL to fix SQL errors.
Experiments on the Spider benchmark show
that our approach outperforms three SOTA ap-
proaches by at least 31.6% in terms of execu-
tion accuracy. A user study with 24 participants
further shows that our approach helped users
solve significantly more SQL tasks with less
time and higher confidence, demonstrating its
potential to expand access to databases, partic-
ularly for non-experts.

1 Introduction

Natural language interfaces allow users to query
a database via natural language. It significantly
lowers the barrier to accessing databases, particu-
larly for those without knowledge of specialized
querying languages such as SQL. So far, a range
of systems have been proposed to translate natu-
ral language queries to their corresponding SQL
queries (Rubin and Berant, 2021; Wang et al., 2020;
Scholak et al., 2021; Yu et al., 2020; Hwang et al.,
2019). With the recent advancement in deep learn-
ing, the state-of-the-art text-to-SQL models have
reached 79.9% execution accuracy on the Spider
benchmark (Yu et al., 2018).

However, the rate of improvement has slowed,
with a gain of only 5% since mid-2021. This is
partly due to the inherent ambiguity of natural lan-
guage and the complex structure of SQL queries

Show me the student ID who has @
the best grade under the age of 18

1 From table student.

C | SELECT name FROM |

2 ... age is greater than 18. <:| student WHERE age |
| i

1

3 Return the name. > 18

1 From table student.

2 ... age is greaterthan less than 18.
|:> 3 Sort based on grade, return first
4 Return the rare id.

: ("SELECT id FROM)
|:| student WHERE '
| age < 18 ORDER

{_BY grade ASCLIMIT1

Figure 1: Refining a SQL query by directly editing a
step-by-step explanation.

(e.g., nested or joined queries). Thus, it is challeng-
ing to generate a fully correct query in one step,
especially for complex tasks (Yao et al., 2019).

There has been growing interest in develop-
ing “human-in-the-loop” approaches that elicit user
feedback to guide SQL generation.

However, most of these approaches only support
feedback in constrained forms, such as answering
multiple-choice questions (MISP, PIIA, DialSQL
Yao et al., 2019; Li et al., 2020; Gur et al., 2018)
or changing incorrect keywords in a drop-down
menu (DIY, Narechania et al., 2021). Such con-
strained feedback is not sufficient to fix many com-
plex errors in real-world SQL tasks.

One exception is NL-EDIT (Elgohary et al.,
2021), which allows users to provide feedback in
an entirely new utterance. However, since the feed-
back is completely open-ended, it encounters sim-
ilar NL understanding challenges as end-to-end
models.

In this paper, we seek to strike a balance between
constrained feedback and open-ended feedback by
proposing a new interaction mechanism through
editable step-by-step explanations. Fig. 1 illus-
trates our idea. This mechanism consists of three
core components: (a) a text-to-SQL model, (b) an

explanation generation method, and (c) an SQL
correction model.

Our key insight is that using a step-by-step ex-
planation as the basis to suggest fixes allows users
to precisely specify where the error is and how to
fix it via direct edits. This not only saves users’
time but also makes it easier for the model to locate
the error and apply fixes.

Based on this idea, we implemented an interac-
tive SQL generation and refinement system called
STEPS. STEPS adopts a grammar-based method to
generate step-by-step explanations and uses a hy-
brid method to convert a user-corrected explanation
back to a SQL query. An evaluation with a simu-
lated user on Spider (Yu et al., 2018) shows that
STEPS can achieve 97.9% exact set matching accu-
racy, outperforming MISP, DIY, and NL-EDIT—by
33.5%, 33.2%, and 31.3% respectively.

To measure STEPS’s performance with users, we
conducted a user study with 24 real users.

We found that within the same amount of time,
STEPS helped users complete almost 2X and 4X
more tasks correctly than DIY and MISP, with sig-
nificantly higher self-reported confidence and less
mental load.'

This work makes the following contributions:
(1) we propose a new interaction mechanism for
the text-to-SQL task; (2) we develop an interac-
tive text-to-SQL system based on the new interac-
tion mechanism; (3) we conduct a comprehensive
evaluation with both simulated and real users and
demonstrate its effectiveness over state-of-the-art
interactive systems. We will make our dataset and
code publicly available upon acceptance.

2 Related Work

2.1 Text-to-SQL Generation

Natural language interfaces have long been rec-
ognized as a way to expand access to databases
(Hendrix et al., 1978; Woods et al., 1972). The
construction of several large text-to-SQL datasets,
such as WikiSQL (Zhong et al., 2017) and Spi-
der (Yu et al., 2018), has enabled the adoption of
deep learning models in this task, achieving un-
precedented performance in recent years (Rubin
and Berant, 2021; Wang et al., 2020; Scholak et al.,
2021; Yu et al., 2020; Hwang et al., 2019). Our

'We worked with the authors of NL-EDIT to include their
system in the user study, but were unable to get it working due
to missing code and other runtime errors. We use the accuracy
reported in the NL-EDIT paper in the experiment.

technique is based on the recent success of neural
text-to-SQL models. Unlike existing models that
perform end-to-end SQL generation, we propose
a new interaction mechanism for users to validate
and refine generated queries through step-by-step
explanations.

As the first step to demonstrate the feasibility of
our approach, we focus on single-turn SQL genera-
tion (Yu et al., 2018) in this work. There has also
been recent work that supports multi-turn SQL gen-
eration (Yu et al., 2019a,b; Guo et al., 2021), where
a sequence of interdependent queries are expressed
in multiple utterances in a dialog. Models designed
for multi-turn SQL generation typically need to
reason about the dialog context and effectively en-
code the historical queries (Wang et al., 2021b; Hui
et al., 2021; Zhang et al., 2019; Cai and Wan, 2020;
Wang et al., 2021a). Our approach can be extended
to support multi-turn SQL generation by initiating
separate refinement sessions for individual queries
while incorporating the contextual information of
previous queries into explanation generation and
text-to-clause generation.

2.2 Interactive Semantic Parsing for SQL

Recently, there has been a growing interest in in-
teractive approaches that elicit user feedback to
guide SQL generation. Iyer et al. (2017) deploys
their model online and allows users to flag incor-
rect queries, based on which their model can be
improved over time2. Both DIY (Narechania et al.,
2021) and NaLIR (Li and Jagadish, 2014a,b) enable
users to select alternative values or subexpressions
to correct SQL. PIIA (Li et al., 2020), MISP (Yao
et al., 2019), and DialSQL (Gur et al., 2018) proac-
tively ask users to clarify their intent via multiple-
choice questions.

Despite the great effort, existing approaches only
solicit feedback in constrained forms, hindering
their flexibility and effectiveness in addressing the
variability of SQL errors. In contrast, our approach
allows users to provide more open-ended feedback
by directly editing the NL explanations generated
by the model to specify what is wrong and how to
fix it.

To the best of our knowledge, the only work that
supports open-ended user feedback in SQL genera-
tion is NL-EDIT (Elgohary et al., 2021). NL-EDIT
is trained on SPLASH (Elgohary et al., 2020), a
dataset of SQL errors and user feedback utterance.

Given an incorrect SQL, NL-EDIT allows users

@ Ask ® Understand © Repair
SAL
SsalL . oo p . 3
| RS merEL 6l T S | , SELECT id FROM student WHERE age < 18 !
“What is the student ID PREEEEEE T e e T .""T ___________________
Replace Synthesize
who has the best grade 1 l P y
under the age of 18" [Explanation generator] |
l Direct Text-to-clause
Explanation transformation model
Text-to-SQL Database From table student 4 4
model Return name and id Atomic edit?
name id il Explanaton 4
sal % . Jordan 3 Edit Fromtable student
\ SELECT name, id : Tom 88 S [Step2] Keep ... age is less than 18
l---fE?@-?EEg?r_‘E_“r‘ Query result U Return neme-end-id
ser

Figure 2: An Overview of Interactive SQL Generation and Refinement with Editable Step-by-Step Explanations

to provide a clarification utterance. Based on the
utterance, the model generates a sequence of ed-
its to the SQL query. Providing feedback via a
new utterance introduces two challenges: (1) the
model needs to infer which part of the SQL query
to fix; (2) the model needs to predict what changes
to apply. This increases the difficulty in interpret-
ing user feedback, as a user can provide feedback
in arbitrary ways. In contrast, our approach asks
users to directly edit an NL explanation and make
corrections to the explanation. Comparing the ini-
tial explanation with the user-corrected explanation
makes it easier to locate the part of a SQL query
that needs to be changed and infer what change to
make.

The idea of SQL decomposition is similar to a
recent work (Mo et al., 2022) that decomposes
a user question to sub-questions on SPARQL.
Their question decomposition model is trained on
a crowd-sourced dataset. They further develop
models that correct the initial parse by modify-
ing the sub-questions using the correction tem-
plates (e.g., replace question #X with Y). In con-
trast, our grammar-based approach can generate
human-readable, step-by-step explanations without
the need for training a model. The explanation
generated by the grammar empowers our system to
map each entity in the explanation and SQL clause,
paving the way for more efficient interaction mech-
anisms, as elaborated in Sec. 3.2.

2.3 Explaining SQL Queries in NL

Our approach is also related to prior work that
generates NL explanations for SQL queries.
Simitsis and loannidis (2009) argued that
databases should “talk back” in the human lan-
guage so that users can verify the results. Kokkalis

etal. (2012) and Koutrika et al. (2010) used a graph-
based SQL translation approach, where each SQL
is represented as a graph and the explanation is
generated by traversing the graph. Elgohary et al.
(2021, 2020) employed a template-based explana-
tion approach, where they manually curated 57
templates for explanation generation. These exist-
ing approaches have limited capability to handle
arbitrary SQL queries. To address this limitation,
we propose a grammar-based method to first ex-
plain terminal tokens (e.g., operators, keywords)
and gradually compose them into a complete ex-
planation based on the derivation rules in the SQL
grammar. Furthermore, none of the existing ap-
proaches supports editable explanations for SQL
correction, which is a key feature of our approach.

3 Approach

Fig. 2 provides an overview of STEPS. Given a
natural language (NL) question, STEPS invokes a
text-to-SQL model to generate an initial SQL query.
Then, it decomposes the generated SQL query into
individual query clauses and re-orders them based
on their execution order. Each clause is then trans-
lated into an NL description of the underlying data
operation, which is then used to form a step-by-
step explanation. By reading the NL explanation
along with the query result, users can easily un-
derstand the behavior of the generated query and
locate any errors, even if they are unfamiliar with
SQL. If one step is incorrect, users can directly
edit its explanation to specify the correct behavior.
STEPS will then regenerate the clause based on
the user-corrected explanation and substitute the
original clause to fix the SQL query, rather than
regenerating the entire query from scratch.

1
Lomm oo
student

Sort the records 38¢€
based on

In table in ascending order

Keep the isless than 18 Return id

records where

age

Figure 3: An example of the explanation generation process

3.1 Grammar-based SQL Explanation

To generate explanations for arbitrarily complex
SQL queries (e.g., a query with nested subqueries),
we design a grammar-based method to first decom-
pose a query into individual clauses. Specifically,
STEPS first parses a SQL query to its abstract syn-
tax tree (AST) based on the SQL grammar in Ta-
ble 5. Then, it traverses the AST to identify the
subtree of each clause while preserving their hier-
archical relations.

Given the subtree of a clause, STEPS performs
an in-order traversal and translates each leaf node
(i.e., a terminal token in the grammar) to the corre-
sponding NL description based on the translation
rules in Table 6. For example, SELECT is translated
to “Return”, while Order By is translated to “Sort
the records based on”. Then, STEPS concatenates
these descriptions to form a complete sentence as
the explanation of the clause.

Since SQL engines follow a specific order to ex-
ecute individual clauses in a query?, STEPS further
reorders the clause explanations accordingly to re-
flect their execution order. We believe that this is a
more faithful representation of the query behavior
and thus can help users better understand the un-
derlying data operations, compared with rendering
them based on the syntactic order of clauses. Fig. 3
shows an example translation.

3.2 Text-to-Clause Generation

Given the user correction to a generated explana-
tion, STEPS adopts a hybrid method to regenerate
the corresponding SQL clause. For simple edits,
such as replacing a column name, STEPS directly
edits the original clause to fix the error based on
three SQL transformation rules. For more complex
edits, STEPS uses a neural text-to-clause model to
regenerate the clause based on the user-corrected
explanation.

The hybrid method is inspired by our observation
that a large portion of SQL generation errors are

2h’ctps ://sqlbolt.com/lesson/select_queries_
order_of_execution

simple errors (e.g., incorrect column names and
operators), which can be fixed with a small edit.
Thus, it is not necessary to regenerate the entire
clause to fix such errors. Furthermore, compared to
using a large model, direct transformation is more
computationally efficient. Our experiment shows
that direct transformation is 22K times faster than
the text-to-clause model (Table 3).

3.2.1 Direct Transformation

We define three types of atomic edits that can be
directly converted into SQL edits by STEPS: (1)
replacing a column name, a table name, or a literal
value (i.e., string, number), (2) adding a new col-
umn name in the explanation of a SELECT clause,
and (3) removing a column name. While one can
always design new transformation rules to support
other simple edits, here we only focus on these
three basic edit types in order to demonstrate the
benefits of direct transformation.

The direct transformation algorithm works as
follows. First, STEPS performs chunking on the
original explanation e, and the user-corrected ex-
planation e,,. We choose to split an explanation
into phrases rather than individual words, since it is
more accurate to recognize column names and table
names that are represented as compound nouns in
an explanation. Then, the chunks are aligned using
the Needleman and Wunsch (1970) algorithm. If a
chunk from the original explanation is aligned with
a chunk in the new explanation and both of them
can be mapped to a column name, a table name, or
a literal value, then STEPS replaces the correspond-
ing name/value from the original clause with the
new name/value. If a chunk from the new expla-
nation is aligned with nothing, the chunk can be
mapped to a column name, and the original clause
is a SELECT clause, then STEPS directly appends
the corresponding column name to the clause after
a comma. If a chunk from the old explanation is
aligned with nothing and the chunk can be mapped
to a column name, then STEPS directly removes
the corresponding column name from the clause.

https://sqlbolt.com/lesson/select_queries_order_of_execution
https://sqlbolt.com/lesson/select_queries_order_of_execution

3.2.2 Text-to-Clause Model

For more complex edits, we develop a text-to-
clause model. We adopt the model architecture
of SmBoP (Rubin and Berant, 2021) for this model.
SmBoP is a semi-autoregressive and bottom-up
transformer-based semantic parser for SQL. It de-
codes subtrees first and then gradually combines
them to form a complete AST of the final SQL.
To train the text-to-clause model, we automatically
created a dataset with 83K text-clause pairs based
on Spider (Yu et al., 2018). Specifically, for each
SQL query in Spider, we use the explanation gen-
eration method in Section 3.1 to decompose them
into clauses and generate an NL explanation of
each clause. To improve the diversity of NL expla-
nations, we paraphrase the original explanations
in two ways. First, we design a set of rules to
randomly replace words with their synonyms, as
shown in Table 8. Second, we paraphrase the ex-
planation using an online paraphrasing tool called
QuillBot>. Since QuillBot does not provide an API,
we develop a web automation script to automate
this process using PyAutoGUI*. We train the text-
to-clause model using the Adam Optimizer with a
learning rate of 1.8e — 4 and a dropout rate of 0.1.
We perform a 10-fold validation and the exact set
matching accuracy of our model is 90.6%. More
details can be found in Appendix D.

3.3 SQL Rewriting and Composition

After regenerating the clauses for all user-corrected
explanations, STEPS composes them together to
form a new query while reconciling possible syntax
errors based on several rewriting rules.

Simply combining SQL clauses may lead to syn-
tactic errors. As shown in Fig. 4, the regenerated
clause may reference another table that does not
exist in the previous query, e.g., info in the second
clause. Thus, we design several rewriting rules to
fix such errors. First, if a table is referenced but is
not the table in the FROM clause, STEPS rewrites the
FROM clause to join the existing table with the new
table based on the foreign key. Second, if multiple
SELECT, WHERE, or HAVING clauses are at the same
hierarchical level, STEPS merges them into a single
clause. Third, if there are multiple ORDER BY or
GROUP BY clauses, STEPS only keeps the first one.
Fig. 4 shows an example of the rewriting process.

3https://quillbot.com
4https ://pypi.org/project/PyAutoGUI

4 Experiment

To evaluate the performance of STEPS, we con-
ducted quantitative experiments on the Spider
benchmark (Yu et al., 2018) with three SOTA in-
teractive SQL generation approaches—MISP (Yao
et al., 2019), DIY (Narechania et al., 2021), and
NL-EDIT (Elgohary et al., 2021).

4.1 User Simulation & Setup

In order to perform a quantitative evaluation of
STEPS on the Spider benchmark (Yu et al., 2018),
we developed an automated script to simulate user
feedback following the user simulation in Yao et al.
(2019). Specifically, given a generated query and
the ground-truth query, our script decomposes both
of them into clauses using the method described
in Section 3.1. Then, it compares the clauses and
checks their semantic equivalence using the com-
ponent matching method of Yu et al. (2018). For
example, SELECT name, age is considered seman-
tically equivalent to SELECT age, name.

The simulated user provides feedback when the
generated query is not semantically equivalent to
the corresponding clause in the ground truth (i.e.,
there is an error). There are three cases. First, if
the generated query contains a clause that does not
exist in the ground truth, our script will delete its
explanation from the original explanation. Second,
if the generated query does not contain a clause
from the ground truth, our script will generate the
NL explanation of this missing clause using the
explanation generation method described in Sec-
tion 3.1, paraphrase it using QuillBot, and insert it
into the corresponding location of the original ex-
planation. Finally, if the generated query contains
an inconsistent clause from the ground truth, our
script will generate the NL explanation based on
the correct clause in the ground truth, paraphrase it
using QuillBot, and replace the explanation of the
incorrect clause with the paraphrased one.

4.2 Comparsion Baselines

We compared STEPS to three state-of-the-art inter-
active SQL generation methods:

MISP (Yao et al., 2019) enables users to give
feedback by answering multiple-choice questions.
For example, MISP may ask users to clarify
whether a column should be considered in the
query, and then the user can answer yes or no to
give feedback. The user’s answer is then used to
constrain the decoding process by adjusting the

https://quillbot.com
https://pypi.org/project/PyAutoGUI

1. FROM student JOIN info ON . .

\

1. From student student.id=info.id { SELECT name, age FROM '
2. WHERE info.age > 18 Rewrite 2. WHERE info.age > 18 AND Camposei student JOIN info ON !
3. WHERE name!=Jordan student.name != “Jordan” student id = info.id
4. SELECT student.name 3 WHERE namel=Jordan ! WHERE info.age > 18 |
5. SELECT info.age 4., SELECT student.name, info.age :‘ Al;JD itudent.name Ii= E

5 SELECT-info-age JHordan™ . I

Figure 4: An example of SQL clause rewriting and composition

probability of code tokens induced by the answer.
We used the original implementation of MISP from
their GitHub repository.

DIY (Narechania et al., 2021) enables users to
refine a generated SQL using a drop-down menu
over the original NL question to select alternative
table names, column names, operators, and aggre-
gate functions. We reimplemented DIY since no
open-source implementation is available. Specif-
ically, to construct the word-entity mapping, we
calculate word embedding semantic similarity. In
the user simulation, we align the generated SQL
with the ground truth SQL. If an entity in the gen-
erated SQL is not present in the ground truth SQL,
which indicates an error, and it has been mapped
to the NL question, which means users can give
feedback via a drop-down menu, we replace it with
the corresponding ground truth entity.

NL-EDIT (Elgohary et al., 2021) enables users
to correct errors by telling the system how to mod-
ify the SQL in NL. User feedback will be parsed
into a set of simple edits (e.g., add, remove) that are
applied to the initial generation. We report results
for NL-EDIT using the accuracy numbers from the
NL-EDIT paper. We worked with the NL-EDIT
authors to try to run the system, but were unable
to resolve issues due to missing code and other
run-time errors.

4.3 Results

Table 1 shows the exact set matching accuracy com-
parison between STEPS and the baselines. Follow-
ing the experimental design of MISP and NL-EDIT,
we use EditSQL (Zhang et al., 2019) as the base
SQL generation model and exact set matching ac-
curacy (Yu et al., 2018) as the evaluation metric.
STEPS achieves 97.9% accuracy, outperforming all
three baselines by at least 31%. This result shows
that allowing users to specify the exact erroneous
steps and only regenerating the incorrect clauses
rather than the entire query can accurately fix most
of the SQL generation errors on the Spider bench-
mark.

Accset
EditSQL (Zhang et al., 2019) 0.576
+ MISP (Yao et al., 2019) 0.644
+ DIY (Narechania et al., 2021) 0.647
+ NL-EDIT (Elgohary et al., 2021) 0.666
+ STEPS 0.979

Table 1: Exact Set Matching Accuracy Comparison

To demonstrate STEPS’s performance is gener-
alizable to other base models, we also evaluate
STEPS on another model called SmBoP (Rubin and
Berant, 2021). SmBoP is one of the best models on
the Spider leaderboard with 74.5% exact set match-
ing accuracy. Table 2 shows STEPS’s exact set
matching accuracy with SmBoP as the base model
in comparison to EditSQL. We also report execu-
tion accuracy, another popular metric that compares
the query results between the generated query and
the ground truth. Note that since EditSQL does not
predict any value in SQL conditions, the queries
generated by EditSQL are not runnable. Thus, we
cannot measure the execution accuracy of EditSQL.
The result shows that STEPS consistently improves
the accuracy of both models on SQL tasks with
different levels of difficulty.’ Specifically, STEPS
can almost solve all easy and medium tasks and
also achieves more than 90% accuracy for the hard
and extra hard tasks.

Table 3 shows the ablation results of the hybrid
method of STEPS. Regarding SQL generation ac-
curacy, STEPS achieves comparable accuracy when
using text-to-clause alone, while experiencing a
significant accuracy degradation when using direct
transformation alone. This makes sense since the
direct transformation method is only designed to fix
a small subset of the possible error types. However,
for the types for which it is intended, the direct
transformation approach is very accurate. As a re-
sult, using it as part of the hybrid system does not
decrease accuracy, but does increase the efficiency.

SSpider categorizes their SQL tasks into four difficulty
levels—easy, medium, hard, and extra hard.

AcCget
Easy

w |

Accexec

Medium Hard Extrahard A Easy Medium Hard Extrahard All
EditSQL || 0.681 0.632 0.456 0.395 0.576 || - - - - -
+STEPS || 0.991 1.000 0.976 0.912 0.979 || 0.991 0.995 0.939 0.912 0.971
SmBoP || 0.883 0.791 0.655 0.512 0.745 || 0.718 0.669 0.672 0.518 0.657
+ STEPS || 0.992 1.000 0.977 0.916 0.981 || 0.992 0.995 0.943 0.916 0.973

Table 2: STEPS’s Accuracy on SQL Tasks with Different Levels of Difficulty

Accget AcCexec Time (ms)
Direct transform only 0.788 0.745 0.0042
Text-to-clause only 0.981 0.973 95.53
Hybrid 0981 0973 57.24

Table 3: Ablation Study of the Hybrid Method

5 User Study

In addition to the quantitative experiments, we also
conducted a user study with 24 real users to evalu-
ate STEPS.®

5.1 Participants

We recruited 24 participants (22M, 2F) through
mailing lists in an R1 university. To investigate how
user expertise affects the performance of STEPS,
participants were selected based on their familiar-
ity with SQL. Specifically, 10 of them had never
heard about or used SQL before (end-user); 10
knew the basics of SQL but had to search online to
recall the syntax details when writing a SQL query
(novice); 4 can fluently write SQL queries (expert).
We shared the consent form with each participant
and obtained their consent before each study. Each
participant was compensated with a $25 gift card.

5.2 Comparison Baselines

We used MISP (Yao et al., 2019) and DIY (Narecha-
nia et al., 2021) as comparison baselines. As ex-
plained in Section 4.2, we did not use NL-EDIT,
since we were unable to reproduce it. To ensure a
fair comparison, we developed user interfaces with
the same visual style for STEPS, MISP (Yao et al.,
2019), and DIY (Narechania et al., 2021). The UI
screenshots are provided in Appendix E.

5.3 SQL Tasks & Procedures

Each study includes 3 sessions, one for each tool.
In each session, participants were asked to use the
assigned tool to complete 8 SQL tasks in 10 min-
utes. We choose such an assignment based on 4
pilot studies before the user study. We found 10

0ur study was approved by our institution’s IRB.

minutes strikes a good balance between making
participants patient and allowing enough time to
complete tasks. To select the tasks, we first per-
formed stratified random sampling on Spider to
create a task pool of 24 SQL tasks, including 6
easy tasks, 6 medium tasks, 6 hard tasks, and 6 ex-
tra hard tasks. Before each session, we selected 2
tasks from each difficulty level from the task pool,
which constitutes a total of 8 tasks to be solved in
the session. To mitigate learning effects, the orders
of both task assignment and tool assignment order
were counterbalanced across participants.

Each session starts with participants watching a
tutorial video of the assigned tool (6 min for STEPS,
3 min for MISP, and 2 min for DIY). Participants
were given 5 minutes to practice and get familiar
with the tool before working on real tasks. For each
task, participants were asked to read the description
of the task and then ask an initial NL question to
the assigned tool. After receiving the generated
query along with the query result, the participant
can further validate and repair the generated query
using the interaction mechanisms provided by the
tool. Participants were allowed to skip a task if
they found it too hard to solve.

At the end of each session, participants were
asked to complete a post-task survey to rate their
confidence about the final SQL query, how success-
ful they perceived themselves in completing the
tasks, and the mental effort to complete the tasks
on a 7-point Likert scale. After all three sessions,
participants completed a final survey, in which they
directly compared the three tools. We recorded
each study with the permission of the participants.
Each study took an average of 79 minutes.

During each study, we asked participants to try
their best to guide the SQL generation model to
generate the correct query, rather than manually
writing the query themselves. This is because some
expert users may easily come up with a SQL query
for easy or medium-level tasks without interacting
with the SQL generation model, while our goal is
to evaluate the effectiveness of the interaction.

Complete Correct Acc. Skipped
MISP 3.0 1.7 0.57 1.4
DIY 54 35 0.68 0.8
STEPS 6.71 5.71 0.867 0.3}

Table 4: User Performance (best results in bold). For all
metrics, an ANOVA test indicated statistically signifi-
cant mean differences across 3 tools (p-value < 0.01).

Confidence (1)
MISP -
DIY -
STEPS -

S
Success (1)

MISP -
DIY -
STEPS -

i . ‘

Mental Load (1)

MISP -
DIY -

STEPS -

Score 1 2 3 4 5 6 7

Figure 5: User Perception.

5.4 Results

Table 4 shows the average number of completed
tasks, correct completions, task completion accu-
racy (#correct / #completed), and skipped tasks.
We found that participants using STEPS completed
more tasks compared to those using MISP and DIY.
Furthermore, participants using STEPS completed
significantly more tasks correctly than DIY and
MISP, achieving the highest accuracy (85.81%) in
SQL generation. Participants using STEPS barely
skipped a task, implying that STEPS provides suffi-
cient support for users to tackle challenging tasks
so that users did not give up quickly. The ANOVA
test shows that the mean differences in Table 4 are
statistically significant among the three different
conditions (p-value < 0.01). These results indi-
cate that STEPS can help users complete SQL tasks
more efficiently and correctly.

We further investigated whether the SQL exper-
tise of users has an impact on user performance.
Fig. 6 shows the average number of tasks correctly
completed by users with different levels of SQL

1 novice
[expert

EE= .
N
L

1.402.25(1.70 3.50|3.50 |3.60 5.70 |16.00|5.60
MISP DIY STEPS

~

=)

w

Correct Tasks
w -

]
L

-
L

Figure 6: Tasks correctly completed by users with dif-
ferent levels of SQL expertise.

expertise as mentioned in Section 5. The results in-
dicate that the performance does not depend on the
expertise and different groups perform similarly.

Based on the survey responses, all participants
ranked STEPS as the most usable and useful tool.
As shown in Figure 5, participants felt the most
confident and successful while experiencing the
least mental load when using STEPS.

Appendix F shows the details of user study re-
sults.

6 Discussion and Limitations

Both the quantitative experiments and the user
study demonstrate STEPS can significantly improve
the accuracy of SQL generation to an unprece-
dented level. This is largely attributed to the in-
teraction design, which allows users to precisely
pinpoint which part of the SQL is wrong and only
regenerates the incorrect clauses rather than the en-
tire SQL query. While simple errors are prevalent
in SQL generation, our ablation study (Table 3)
shows that fixing simple errors alone is insufficient.
Specifically, only using our direct transform ap-
proach, which only fixes simple errors, can only
achieve 78.8% exact set accuracy. Yet using our
hybrid method, which combines direct transforma-
tion with a neural approach to fix more complex
errors, achieves 98.1%.

We believe this interactive design can be po-
tentially applied to code generation tasks in other
domains such as WebAPI (Su et al., 2017) and
SPARQL (Ngonga Ngomo et al., 2013; Mo et al.,
2022).

The major limitation of our work lies in the user
simulation of the quantitative experiment. It as-
sumes that users can provide perfect feedback—
precisely locating an error in the SQL query and

clearly explaining the correct behavior. Yet in prac-
tice, users may miss or incorrectly specify an erro-
neous clause and provide ambiguous explanations.
Our user study addresses this limitation by measur-
ing actual user success. As expected, user accuracy
from the user study (85.8%) is lower than the ex-
periment with a simulated user (97.3%).

In this work, we only experiment on Spider (Yu
et al., 2018) because it has become the de facto
standard for measuring single-turn text-to-SQL per-
formance. Since Spider is a complex and cross-
domain dataset, we believe our work can be easily
generalized to other simpler (Zhong et al., 2017) or
domain-specific (Zelle and Mooney, 1996) datasets.
Compared to our user study, users in real-world sce-
narios are often more familiar with their working
context (e.g., database schema). Therefore, we ex-
pect that users will achieve better performance than
in our user study.

In future work, it is worthwhile to develop mech-
anisms to account for potential errors and ambigu-
ity in user feedback. A promising direction is to
enable STEPS to ask clarification questions when
the user feedback is ambiguous or incorrect. Fur-
thermore, one may also consider augmenting our
dataset with ambiguous feedback and re-training
the text-to-clause model to improve its capability
to interpret ambiguous feedback.

7 Conclusion

This work presents STEPS, a new interactive ap-
proach for text-to-SQL generation. STEPS decom-
poses the original text-to-SQL task into smaller
text-to-clause tasks and enables users to validate
and refine a generated query via editable explana-
tions. An experiment on Spider and a user study
show STEPS can significantly boost the accuracy of
end-to-end models by incorporating user feedback.
Furthermore, STEPS outperforms three state-of-the-
art approaches for interactive SQL generation.

8 Ethical Consideration

The interactive text-to-SQL system proposed by
this work poses minimal risks to human users and
society. Instead, it will significantly lower the bar-
rier of querying database systems and empower a
great number of people, especially those without
technical backgrounds, to access and analyze data.
To evaluate the usability of our system, we con-
ducted a human-subject study with real users. To
minimize the risks to human subjects, we strictly

followed the community standards with the ap-
proval from the IRB office in our institute. Specifi-
cally, in the recruitment email, we shared a consent
form that includes detailed information about the
study procedure, potential risks, data usage, and
confidentiality. We obtained consent from each
user before proceeding with the study. All col-
lected data were anonymized and de-identified to
protect the privacy of users.

References

Yitao Cai and Xiaojun Wan. 2020. Igsql: Database
schema interaction graph based neural model for
context-dependent text-to-sql generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6903-6912.

Ahmed Elgohary, Saghar Hosseini, and Ahmed Has-
san Awadallah. 2020. Speak to your parser: Interac-
tive text-to-SQL with natural language feedback. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2065—
2077, Online. Association for Computational Lin-
guistics.

Ahmed FElgohary, Christopher Meek, Matthew
Richardson, Adam Fourney, Gonzalo Ramos,
and Ahmed Hassan Awadallah. 2021. NL-EDIT:
Correcting semantic parse errors through natural
language interaction. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5599-5610, Online.
Association for Computational Linguistics.

Jiaqi Guo, Ziliang Si, Yu Wang, Qian Liu, Ming Fan,
Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2021.
Chase: A large-scale and pragmatic chinese dataset
for cross-database context-dependent text-to-sql. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2316—
2331.

Izzeddin Gur, Semih Yavuz, Yu Su, and Xifeng Yan.
2018. DialSQL: Dialogue based structured query
generation. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1339-1349, Mel-
bourne, Australia. Association for Computational
Linguistics.

Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz,
and Jonathan Slocum. 1978. Developing a natural
language interface to complex data. ACM Trans.
Database Syst., 3(2):105-147.

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li,
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei

https://doi.org/10.18653/v1/2020.acl-main.187
https://doi.org/10.18653/v1/2020.acl-main.187
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/P18-1124
https://doi.org/10.18653/v1/P18-1124
https://doi.org/10.1145/320251.320253
https://doi.org/10.1145/320251.320253

Zhu, and Xiaodan Zhu. 2021. Dynamic hybrid rela-
tion exploration network for cross-domain context-
dependent semantic parsing. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 13116-13124.

Wonseok Hwang, Jinyeong Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
In ArXiv preprint arXiv:1902.01069. arXiv.

Srinivasan Iyer, loannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963-973, Vancouver, Canada.
Association for Computational Linguistics.

Andreas Kokkalis, Panagiotis Vagenas, Alexandros Zer-
vakis, Alkis Simitsis, Georgia Koutrika, and Yannis
Ioannidis. 2012. Logos: A system for translating
queries into narratives. In Proceedings of the 2012
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’12, page 673-676, New
York, NY, USA. Association for Computing Machin-
ery.

Georgia Koutrika, Alkis Simitsis, and Yannis E. Ioan-
nidis. 2010. Explaining structured queries in natural
language. In 2010 IEEE 26th International Con-
ference on Data Engineering (ICDE 2010), pages
333-344.

Fei Li and H. V. Jagadish. 2014a. Constructing an
interactive natural language interface for relational
databases. Proc. VLDB Endow., 8(1):73-84.

Fei Li and Hosagrahar V Jagadish. 2014b. Nalir: An
interactive natural language interface for querying re-
lational databases. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management
of Data, SIGMOD 14, page 709-712, New York,
NY, USA. Association for Computing Machinery.

Yuntao Li, Bei Chen, Qian Liu, Yan Gao, Jian-Guang
Lou, Yan Zhang, and Dongmei Zhang. 2020. “what
do you mean by that?” a parser-independent interac-
tive approach for enhancing text-to-SQL. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6913-6922, Online. Association for Computational
Linguistics.

Lingbo Mo, Ashley Lewis, Huan Sun, and Michael
White. 2022. Towards transparent interactive seman-
tic parsing via step-by-step correction. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 322-342, Dublin, Ireland. Association
for Computational Linguistics.

Arpit Narechania, Adam Fourney, Bongshin Lee, and
Gonzalo Ramos. 2021. Diy: Assessing the correct-
ness of natural language to sql systems. In 26th

International Conference on Intelligent User Inter-
faces, IUI *21, page 597-607, New York, NY, USA.
Association for Computing Machinery.

Saul B. Needleman and Christian D. Wunsch. 1970.
A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443-453.

Axel-Cyrille Ngonga Ngomo, Lorenz Biihmann,
Christina Unger, Jens Lehmann, and Daniel Gerber.
2013. Sparql2nl: Verbalizing sparql queries. In
Proceedings of the 22nd International Conference
on World Wide Web, WWW ’13 Companion, page
329-332, New York, NY, USA. Association for Com-
puting Machinery.

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-
autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
311-324, Online. Association for Computational Lin-
guistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Alkis Simitsis and Yannis Ioannidis. 2009. Dbmss
should talk back too. In 710.48550/ARXIV.0909.1786.
arXiv.

Yu Su, Ahmed Hassan Awadallah, Madian Khabsa,
Patrick Pantel, Michael Gamon, and Mark Encar-
nacion. 2017. Building natural language interfaces to
web apis. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management,
CIKM ’17, page 177-186, New York, NY, USA. As-
sociation for Computing Machinery.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567-7578, Online. Association for
Computational Linguistics.

Run-Ze Wang, Zhen-Hua Ling, Jingbo Zhou, and Yu Hu.
2021a. Tracking interaction states for multi-turn text-
to-sql semantic parsing. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 13979-13987.

Xiaxia Wang, Sai Wu, Lidan Shou, and Ke Chen. 2021b.
An interactive nl2sql approach with reuse strategy. In
Database Systems for Advanced Applications: 26th
International Conference, DASFAA 2021, Taipei, Tai-
wan, April 11-14, 2021, Proceedings, Part II, page
280-288, Berlin, Heidelberg. Springer-Verlag.

https://doi.org/10.48550/ARXIV.1902.01069
https://doi.org/10.48550/ARXIV.1902.01069
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.1145/2213836.2213929
https://doi.org/10.1145/2213836.2213929
https://doi.org/10.1109/ICDE.2010.5447824
https://doi.org/10.1109/ICDE.2010.5447824
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2022.findings-acl.28
https://doi.org/10.18653/v1/2022.findings-acl.28
https://doi.org/10.1145/3397481.3450667
https://doi.org/10.1145/3397481.3450667
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1145/2487788.2487936
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.48550/ARXIV.0909.1786
https://doi.org/10.48550/ARXIV.0909.1786
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.1007/978-3-030-73197-7_19

William Woods, Ronald Kaplan, and Bonnie Webber.
1972. The lunar science natural language information
system: Final report.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019.
Model-based interactive semantic parsing: A unified
framework and a text-to-SQL case study. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 5447-5458, Hong
Kong, China. Association for Computational Linguis-
tics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang,
Yi Chern Tan, Xinyi Yang, Dragomir R. Radeyv,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing. CoRR, abs/2009.13845.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962—
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511-4523, Florence, Italy.
Association for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAT’ 96, page 1050-1055. AAAI Press.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caiming

Xiong, Richard Socher, and Dragomir Radev. 2019.
Editing-based sql query generation for cross-domain
context-dependent questions. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 5338-5349.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. In
arxiv preprint, arxiv/1709.00103. arXiv.

A SQL Grammar and Translation Rules

('sql) := SELECT (nouns) { sub)
| (sql) INTERSECT (sql)
| ('sql) UNION (sql)
| (sql) EXCEPT (sql)

(sub):= €
| FROM (noun) { sub)
| WHERE (condition) (sub)
| JOIN (noun) ON (condition) (sub)
| GROUP BY (noun) { sub)
| HAVING (condition) (sub)
| ORDER BY (noun) { sorting) { sub)

[LIMIT NUM

(nouns) :=DISTINCT (nouns)

(noun),(nouns)

(noun)

(func) ((noun))

) :=(noun) (op) NUM

| {noun) (op) (noun)

I {noun’) (op) (sql)

| BETWEEN (noun) AND (noun)

| { condition) AND (condition)

| { condition) OR (condition)

I NOT (condition)

(sorting) := ASC | DESC | €

(func) := COUNT I AVG | MAX | MIN | SUM

(

{

|
|
|
(condition

op):=>=l<=l>I<l=l!=
noun) := STRING | STRING.STRING | *

Table 5: A Simplified SQL Grammar

Table 5 shows a simplified version of the SQL
grammar. In this grammar, italicized text with
angle brackets, such as (sql), represents non-
terminals which can be further expanded based
on derivation rules. Text without brackets, such
as the SELECT keyword, represents terminals that
cannot be further expanded. Using the derivation
rules in Table 5, STEPS decomposes a SQL query
into 6 types of SQL clauses: (1) FROM-JOIN-ON, (2)
WHERE, (3) GROUP BY, (4) HAVING, (5) ORDER BY, (6)
SELECT. We do not separate the JOIN clause from
the FROM clause, since it is easier to translate them
together in the later step. Furthermore, for nested

https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D19-1547
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.48550/ARXIV.1709.00103
https://doi.org/10.48550/ARXIV.1709.00103

queries with INTERSECT, UNION, EXCEPT, NOT IN
keywords, STEPS first decomposes them into sub-
queries and then decompose each subquery to the
6 types of clauses.

STEPS translates each SQL clause to NL expla-
nation based on translation rules and templates in
Table 6 and Table 7. Table 6 shows the translation
rules for individual SQL tokens, e.g., keywords,
operators, built-in functions, etc. Specifically, {col}
and {T} mean translating a column or table name
to a more readable name. We pre-defined mapping
between each table and column in a database to a
more readable name. Such a mapping can be eas-
ily defined based on the database schema and only
needs to be defined once. If no such mapping is
available, STEPS will reuse the same column/table
name as defined in the database schema. Table 7
shows the translation templates for nested queries.
The TRANSLATE function means recursively in-
voking the explanation generation method on the
subquery.

B Synonym Substitution Rules for
Paraphrasing

To increase the NL explanation diversity in our
training dataset, we paraphrase each machine-
generated explanation by randomly replacing the
NL explanation template words with substitute syn-
onyms listed in Table 8. For example, the machine-
generated explanation “return name” can be para-
phrased to “find name” by replacing “return” with
“find”.

C Experiment Setup & Hyperparameters

We run our experiment on a server with Ubuntu
20.04, 2 NVIDIA Tesla T4 GPUs (16 GB), Intel
Core i17-11700K GPU, and 64 GB memory.

For the text-to-clause model, we follow the same
architecture of SmBoP (Rubin and Berant, 2021).
Specifically, our model consists of 24 transformer
layers, followed by another 8 RAT-SQL (Wang
et al., 2020) layers. Each transformer has 1 feed-
forward layer, 8 attention heads, and 256 dimen-
sions. For each user-given NL question, it is en-
coded together with the database schema using
GRAPPA (Yu et al., 2020).

We finetuned the text-to-clause model and se-
lected the best-performing model with the follow-
ing hyperparameters: optimizer = Adam, learning
rate = 1.8e — 4, dropout rate = 0.1, beam size = 26,
epoch = 240, batch size = 12.

SQL Elements Translation

SELECT Return

FROM In table

JOIN and table

WHERE Keep the records where
GROUP BY Group the records based on
HAVING Keep the groups where
ORDER BY Sort the records based on
LIMIT 1 return the first record
LIMIT num return the top num records
* all the records

coly, coly the {col; } and the {coly}
CyCocCy the {c; }, the {c,} and the {c3}
T.col {col} of {T}

COUNT (col) the number of {col}

COUNT (%) the number of records
AVG(col) the average value of {col}
MAX(col) the maximum value of {col}
MIN(col) the minimum value of {col}
SUM(col) the sum value of {col}
ASC in ascending order

DESC in descending order

= is

1= is not

> is greater than

>= is greater than or equal to

< is less than

<= is less than or equal to

IN is in

NOT IN is not in

BETWEEN is between

LIKE is in the form of

NOT LIKE is not in the form of

Table 6: Translation rules for SQL elements

D The Impact of Paraphrasing on Model

Performance

To investigate the impact of paraphrasing on model
performance, we trained and tested the text-to-
clause models under 3 conditions: (1) the explana-
tion is generated by STEPS and not paraphrased, (2)
the machine-generated explanation is paraphrased
by the replacement rules in Table 8, and (3) the
machine-generated explanation is paraphrased by
QuillBot. Then we evaluate the exact set matching
match accuracy of generated clauses in Table 1.
Furthermore, we evaluate the end-to-end SQL gen-
eration accuracy in our user simulation experiment
under 3 conditions. Overall, paraphrasing does not
greatly impact the performance of text-to-clause
SQL.

SQL compound Translation

Start the first query:
TRANSLATE(q1);

Start the second query;
TRANSLATE(q2);

Return the intersection of them;

a1 INTERSECT go

Start the first query q;:
TRANSLATE(q;);

Start the second query:
TRANSLATE(q2);

Return the union of them.

g1 UNION g2

Start the first query:
TRANSLATE(q1);

Start the second query:
TRANSLATE(q2);

Return the records in q; but not in qa.

q1 EXCEPT q2

Start the first query:

TRANSLATE(q1);

Start the second query:

TRANSLATE(...);

Keep the records where {col} in/not in q;.

... col IN/NOT IN q

Table 7: NL explanation translation rules for SQL com-
pound

E User Interfaces of STEPS and Baselines

This section demonstrates the user interface (UI)
of STEPS, DIY, and MISP used in our user study.
As shown in Fig. 7, the UI of STEPS has 4 views.
First, the upper left view allows users to select a
database and inspect the data records in each ta-
ble. Users are allowed to search, rank, and filter
data records in the table. This view helps users
explore the database and manually validate the
query result based on the original data. Second,
the upper right view provides a dialog for users to
ask questions in natural language. For each ques-
tion, STEPS automatically generates a SQL query.
Third, the lower left view shows the query result
of a generated SQL. Users can inspect the query
result to validate whether the generated query is
correct or not. Fourth, the lower right view renders
the core functionality of STEPS, which provides an
editable step-by-step explanation for the generated
SQL query. Users can easily read the explanation
and identify whether there is any erroneous or miss-
ing step in the query. If users find an error in a step,
they can directly edit the explanation of that step.
Users can also add or remove a step. If users click
the ADD button next to a step, an empty text field
will appear right below this step and the user can
write the description for this new step. If users
click the REMOVE button next to a step, this step
will be removed. Furthermore, users can check the
intermediate query result of a step by clicking the
circled step number icon. For example, if users

click the green number (1), STEPS just returns all
the data in the AIRPORT table. Additionally, users
can undo and redo previous edits using the stepper
below.

As shown in Fig. 8, MISP shares a similar UI as
STEPS. MISP also allows users to select a database,
inspect data in a table, and view the query result.
The main difference from STEPS is that MISP will
render a generated query in the dialog and ask users
to confirm whether the generated SQL is correct
or not. If the user says the generated query is not
correct, it will proactively predict which part of the
SQL is wrong and ask users to select alternative
generations to fix the error. Furthermore, MISP
does not provide an NL explanation of the gener-
ated SQL. Users have to read and inspect the gener-
ated SQL, which is difficult for end-users who do
not understand the syntax and semantics of SQL.

Fig. 9 shows the UI of DIY. To reduce the in-
formation overload of inspecting a large database,
DIY only samples a small amount of data from a
user-selected database. users can type in a natu-
ral language question and then DIY generates a
SQL query by invoking the base SQL generation
model. DIY automatically matches tokens in the
NL question with tokens in the generated SQL.
Each matched NL tokens is augmented with a drop-
down menu with alternative SQL tokens predicted
by the base model. If the prediction of a token
is wrong, users can click on the dropdown menu
and select an alternative token to fix it. Users can
examine the query result, as well as the execution
steps, in the bottom right view.

F Analysis of Post-study Survey
Responses

We analyzed the post-task survey responses and in-
terview recordings to understand why participants
performed much better when using STEPS com-
pared with using MISP and DIY. Specifically, 17
participants strongly agree that seeing the natural
language explanation helps them understand the
SQL query. Moreover, 22 participants explicitly
wrote that they highly appreciated the step-by-step
explanations provided by STEPS, since these expla-
nations made SQL queries more understandable,
editable, and learnable. P12 wrote, “I liked that it
shows the steps in human language so if there is
a mistake I can edit it easily. Also, it was nice to
see the generated SQL code I believe I could learn
SQL using this tool also.” By contrast, 14 of 24 par-

Template word

Substitute synonyms

return

get, find, find out, discover, show, show me, determine,
demonstrate, give me, obtain, select, choose, search,
choose, search, display, list, acquire, gain

keep the records where

make, make sure, where, filter the records where

greater than

more than, exceed, no less than, over, above,
larger than, beyond, in excess of, transcend, surpass

lower than, no more than, below, lesser, under,

less than
underneath, not so much as, beneath
. increasing, ascendant, growing, rising,
ascending . g. . g . & g
soaring, climbing, mounting
. decreasing, descendant, falling, declining,
descending . . S
dropping, lessening, diminishing
. max, maximum, utmost, greatest,
maximum . .
most, topmost, highest, top, largest, biggest
.. lowest, smallest, least, min, minimal,
minimum
bottom, bottommost, lowermost
number of amount of, quantity of, total of

in the form of

appearing as, with the appearance of, in the shape of

that has associated with, connected to
according to, in terms of, specified by,
based on) & . P L. Y .
built on, established on, considering, regarding
. different, disparate, distinctive,
distinct
particular, diverse, dissimilar, unique
all each, every, any, whole, entire, total
batch, organize, categorize, classify, arrange, separate,
group label, tag, mark, pack, collect, assemble, distribute,
gather, merge, put together, index, concentrate, combine
Sort order, rank, sequence

Table 8: Replacement rules for paraphrasing NL explanation

AcCCee As I'm no expert in SQL, I couldn’t tell instantly
No paraphrasing 0.922 if the queries were wrong, so I had to go back to
Paraphrasing with synonym substitution 0.915 the data and check manually.” 12 participants re-
Paraphrasing with QuillBot 0.906 ported that the feedback elicitation mechanism in

Table 9: The exact set matching accuracy of the text-to-
clause model when trained with three different datasets.

ACCset ACCemec
SmBoP+STEPSupara 0981 0.973
SmBoP+STEPSsubstitute (0 975 (0.973
SmBoP+STEPS 7uilibot 0975 0.971

Table 10: The end-to-end SQL generation accuracy of
STEPS when using the text-to-clause model trained on
different datasets.

ticipants reported it was hard to understand and val-
idate the generated SQL queries when using MISP
or DIY. P1 wrote, “Sometimes it generates very
complex SQL that is difficult to read and check.”
P9 wrote, “Sometimes it gives the wrong answer.

MISP was not very efficient in solving SQL tasks.
P16 wrote, “I have to keep answering yes or no
questions when using MISP.”

11 of them reported the drop-down menu of DIY
provides the limited capability to make changes.
P3 said, “[It is] hard to know how to make changes
/ resolve issues that were not covered by the drop-
down menus.”

DataBase Table Jurer Flgase CHECK diliu 11I0Ully U1 explanativl Ueiuw.
Data Base flight_2 - airports v
is the airport name for ai
airportcode airportname city country cour
Surel Please check and madifv the exnlanation helow
APG Phillips AAF Aberdeen United States us = SEND
ABR Municipal Aberdeen United States us A y
DYS Dyess AFB Abilene United States us .
Query Explanation
1-3 of 100 > o In table airports
A 4
Keep the records where the airportcode of airports
i "
Query Result is "AKO
a Return the airportname of airports @0
airportname
Colorado Plains Regional Airport j. Show SQL SELECT airports.airportn
SELECT airports.airportname FROM airports WHERE airports.airportcode = "AK0Q"
—_— PREVIOUS
1-10f1 < EDIT
A y . »

Figure 7: The UI of STEPS

MISP

DataBase Table
DataBase aircraft - pilot -
Show me the names of pilot are over 25 years old.
age name pilot_id o
My prediction is:
23 Prof. Zackery Collins 1)
select Name from pilot where Age < 25
20 Katheryn Gorczany IV 2
Do you think it is the correct one?
23 Mr. Cristian Halvorson Il 3 .
25 Ayana Spencer 4
Well... | guess the wrong word is ' <'
1-40f12 >
- y Am | correct?
Query Result =
Here are some alternatives of this word
Name
Please choose one.
Prof. Zackery Collins .
A
Katheryn Gorczany IV B: Name
C:pilot
Mr. Cristian Halvorson Il D:25
> SEND
1-30f3 \
A

Figure 8: The UI of MISP

DIY

Generated SQL query : SELECT book title , book.issues FROM book

DataBase

book_2

Please enter natural language question

*

Input your question

Show me the title and issues book.Book_ID
book.Issues
book.Title

=ho me e book.Writer
book.title
publication pubIiSHer
Sample Data Set
PUBLICATION BOOK
D Book_ID Title Issues
] Title
a1 The Black Lamb 6
[] TheBlack Lamb
O 2 Bloody Mary 4
[[] Bloody Mary
D 3 Bloody Mary : Lady... 4

Figure 9: The UI of DIY

GENERATE
and ISSUES

book.issues

book.issues

Execution steps

o o >

SQL: SELECT * FROM book

Issues

